RELATÓRIO DE ATIVIDADES 2015 PRÓ-REITORIA DE PESQUISA (PROPESQ)

Jamil Assreuy

Pró-Reitor de Pesquisa

Elias Machado Gonçalves

Diretor do Departamento de Projetos de Pesquisa

Dachamir Hotza

Presidente do Comitê Gestor do Laboratório Interdisciplinar do Desenvolvimento de Nanoestruturas (LINDEN)

LABORATÓRIO CENTRAL PARA O DESENVOLVIMENTO DE NANOESTRUTURAS (LINDEN)

Unidade: Laboratório Interdisciplinar para o Desenvolvimento de Nanoestruturas

(LINDEN)

Presidente do Comitê Gestor: Dachamir Hotza Vice-Presidente do Comitê Gestor: César V. Franco

Endereço:

Centro de Ciências Física e Matemáticas (CFM)

Departamento de Química (QMC) Campus Trindade, Sala QMC 214 88040-900 Florianópolis, SC

Telefones: +55 (48) 3721 3610/3633 Home Page: http://linden.ufsc.br E-mail: linden@contato.ufsc.br

1 Equipe técnica e científica

1.1 Comitê gestor

De acordo com o Regimento Interno do LINDEN/UFSC (disponível em http://linden.ufsc.br/files/2013/11/Regimento.pdf), o Comitê Gestor (CG) é composto pelo Presidente, pelo Vice-Presidente, por 5 pesquisadores das unidades laboratoriais da UFSC integrantes do LINDEN. Atualmente, o CG tem os seguintes participantes:

- Dachamir Hotza (CERMAT, Presidente)
- César V. Franco (LABSIN, Vice-Presidente)
- Aloisio N. Klein (LABMAT, Membro)
- Ricardo A. F. Machado (LCP, Membro)
- Philippe J. P. Gleize (NANOTEC, Membro)
- Elenara M. T. L. Senna (FARMACO, Membro)
- André A. Pasa (LCME/LFFS, Membro)

1.2 Laboratórios associados ao LINDEN

No quadro a seguir estão listados os laboratórios associados ao LINDEN/UFSC e seus respectivos pesquisadores líderes (disponível em http://linden.ufsc.br/laboratorios-associados).

Nome	Formação	Laboratório	Departamento	Centro
Aloisio N. Klein	Física	LABMAT	EMC	СТС
André A. Pasa	Física	LCME	PROPESO	2
André A. Pasa	Física	LFFS	FSC	CFM
Antonio A. U. Souza	Eng. Química	LABMASSA	EQA	СТС
César V. Franco	Química	LABSIN	QMC	CFM
Edson Minatti	Química	POLISSOL	QMC	CFM
Elenara L. Senna	Farmácia	LABFARMACO	CIF	CCS
Josiel B. Domingos	Química	LACBIO	QMC	CFM
Marcio C. Fredel	Eng. Mecânica	CERMAT	EMC	СТС
Ricardo A. F. Machado	Eng. Química	LCP	EQA	СТС
Tania B. C. Pasa	Física	GEIMM	CIF	CCS
Wellington L. Repette	Eng. Civil	NANOTEC	ECV	СТС

1.3 Bolsistas atuantes no LINDEN e laboratórios associados

No quadro a seguir estão listados os bolsistas com bolsas vigentes atuando no LINDEN e seus laboratórios associados.

Nome	Formação	Tit.	Área de atuação	Laboratório
Andréa Granada	Farmácia	D	Nanotecnologia de fármacos	LINDEN
Ângelo O. Silva	Eng. Química	G	Polímeros biodegradáveis	LCP
Caroline Bressan	Eng. Materiais	M	Nanomateriais	LINDEN
Caroline M. Moreira	Farmácia	G	Farmacotecnia	FARMACO
Dagoberto O. Silva	Química	D	Nanopartículas	LACBIO

Guilherme Gralik	Eng. Materiais	M	Materiais Eletrocerâmicos	CERMAT
Marco A. Silveira	Química	G	Química Orgânica	LACBIO
Mariana F. Sanches	Química	M	Comportamento reológico	CERMAT
Natália D. Koch	Eng. Química	G	Nanotecnologia	LCP
Roberto C. P. Nallin	Eng. Materiais	G	Materiais e Metalúrgica	LABMAT
Sarah M. Pasini	Eng. Química	M	Tratamento de efluentes	LABMASSA
Steferson L. Stares	Eng. Mecânica	D	Biomateriais e Manufatura Aditiva	LINDEN
Tatiane M. Amadio	Eng. Materiais	M	Materiais Cerâmicos	CERMAT
Thais H. C. G. Borges	Biologia	G	Microscopia Eletrônica	LCME

2 Introdução e atribuições

O Laboratório Interdisciplinar do Desenvolvimento de Nanoestruturas (LINDEN) é formado por doze laboratórios associados com ênfase no desenvolvimento de nanoestruturas. Atualmente o LINDEN tem a sua sede no Departamento de Química na sala 208 com regimento interno e regras definidas para a utilização multiusuária de equipamentos. Com previsão para o final de 2016, o LINDEN ocupará dois andares de oito pavimentos do prédio do Instituto Multidisciplinar de Engenharias de Superfície (IMES) onde se instalarão laboratórios para fabricação de micro e nano componentes e superfícies nanoestruturadas, salas de interação com o setor produtivo, salas para pesquisadores visitantes e auditório com 105 lugares visto que vai compartilhar todas as facilidades comuns disponíveis no prédio do IMES.

O LINDEN está focado no desenvolvimento de sistemas nanoestruturados para diversas aplicações, com o objetivo de obter materiais que apresentem melhorias nas suas propriedades e no seu desempenho. Os pesquisadores que integram o LINDEN têm amplo domínio das técnicas de síntese, obtenção e nanofabricação, assim como das técnicas de caracterização de nanoestruturas, as quais podem ser obtidas a partir de materiais orgânicos (poliméricos ou lipídicos), inorgânicos ou metálicos. Esse tema agrega o desenvolvimento de sistemas nanoestruturados com vistas a aplicações biomédicas, farmacêuticas e cosméticas, que podem inclusive transportar moléculas ativas e outros compostos de interesse, e ao desenvolvimento de técnicas para a modificação de superfícies com materiais nanoestruturadas, coatings superficiais de alto desempenho e membranas, e ao desenvolvimento de catalisadores nanoparticulados para aplicação em reações químicas de interesse industrial. No mínimo, quinze por cento do tempo de uso de equipamentos será destinado ao setor produtivo constituído por empresas usuárias e produtoras de bens e serviços de nanotecnologia.

Uma das principais características do LINDEN é o grau de maturidade e consolidação dos laboratórios associados, tanto em termos de infraestrutura de operação e de facilidades instrumentais como de serviços. A consolidação ocorre nas áreas de atuação e se resume no desenvolvimento de nanomateriais, a satisfatória infraestrutura de operação e as facilidades instrumentais e de serviços. Uma vez que ocupe o espaço de 1.042 m² no Instituto Multidisciplinar de Engenharias de Superfície previsto para ser entregue no final de 2016, o LINDEN poderá atuar em sinergia com a infraestrutura deste complexo para fabricação de micro e nano componentes e superfícies nanoestruturadas. O LINDEN, ao atingir maturidade e robustez no prazo máximo de 5 anos, se consolidará como laboratório modelo e inspirador para outras iniciativas similares.

O LINDEN dá acesso facilitado à infraestrutura de pesquisa aos laboratórios de pequeno porte e/ou emergentes e empresas *spin off* estruturando destarte a governabilidade para as nanotecnologias na região que engloba todo ambiente UFSC, centros de pesquisa e inovação, incubadoras e setor produtivo. De forma robusta e consistente, objetiva promover a consolidação de grupos emergentes, de laboratórios de pesquisa em nanotecnologias e de empresas interessadas em P,D&I em nanotecnologias tanto regional como nacionalmente.

Como projeção de um cenário de 5 anos, o LINDEN prevê adicionar a essas competências e facilidades instrumentais o desenvolvimento da capacidade de escalonamento para atender laboratórios e institutos externos à UFSC, as *spinoff e startup* de nanotecnologia que fornecem produtos e soluções para os seus clientes potenciais, as industrias tradicionais de Santa Catarina resultando em novos produtos e processos, com salto quantitativo e qualitativo em produtos inovadores. Há um conjunto expressivo de empresas com grande potencial de interesse em soluções com base na nanotecnologia que certamente se beneficiarão dos recursos em infraestruturas mais centralizados do LINDEN. Essas empresas terão acesso aos benefícios e vantagens competitivas dos laboratórios consolidados associados ao LINDEN com foco no desenvolvimento de nanomateriais e que já operam comprovadamente como laboratórios multiusuários.

O LINDEN dispõe de um site (http://linden.ufsc.br/) com notícias do mundo da nanotecnologia que engloba desde descobertas inéditas da pesquisa até novas regulamentações. Além das notícias, o site também é atualizado com programações de eventos relacionados com nanotecnologia pelo Brasil e também artigos publicados pela equipe de Professores Pesquisadores do LINDEN. Além disso, o site facilita a comunicação entre os laboratórios e os usuários externos disponibilizando as análises

de cada laboratório e o respectivo contato.

O LINDEN abre uma ação estruturante, de gestão e disponibilização do potencial instrumental da Universidade para alavancar o desenvolvimento das vertentes de forma organizada e estratégica, disponibilizando infraestrutura com grande potencial de inovação, e promovendo a formação, capacitação e fixação de recursos humanos, a educação em nanotecnologias e sua divulgação, possibilitando ao País atingir os grandes objetivos nacionais.

3 Atividades realizadas

3.1 Análises e ensaios

No quadro a seguir estão listados os ensaios e as análises disponibilizadas pelo LINDEN e laboratórios associados e seus respectivos equipamentos (disponível em http://linden.ufsc.br/analises/)

Análise/Ensaio	Equipamento	Descrição	Laboratório
GPC	LC-20AD Shimadzu	Separação de moléculas dissolvidas com base no tamanho.	LCP
Liberação e permeação cutânea de compostos nanoencapsulados	Dist e USP 4 Erweka	Avaliação da permeação cutânea de compostos.	FARMACO
Microscopia Confocal	Leica DMI6000 B Microscope	Confocal Scanner TCS SP5 acoplado, Laser de Diodo na linha UV 405 nm, Laser Ar linhas: 458, 476, 488, 496, 514 nm. Laser de He-Ne nas linhas: 543, 594 e 633 nm	LCME
Microscopia de Transmissão	JEM – 1011 TEM	Voltagem de aceleração máxima: 100 kV, Resolução para imagem de ponto: 0,45 nm, Resolução para imagem de linha: 0,20 nm, Faixa de magnificação: 800x a 600.000x, Mód. Inclinação estágio goniométrico: ±20º	LCME
Microscopia de Transmissão	JEM - 2100 TEM	Voltagem de aceleração máxima: 200 kV, Magnificação : 2000x a 1.200.000x, Resolução para imagem de ponto: 0,23 nm, Resolução para imagem de linha: 0,14 nm, Mód.	LCME

		Inclinação estágio goniométrico: ±30º	
Microscopia de Varredura	JEOL JSM- 6390LV Scanning Electron Microscope	Filamento de Tungstênio, Voltagem de aceleração: 0.5 a 30kV, Magnificação 25x a 300000x, Resolução alta tensão: 3nm; baixa: 4nm.	LCME
Microscopia de Varredura	JEOL JSM-6701F Scanning Electron Microscope	Catodo frio: Emissão de campo (FESEM), Alta resolução: 1nm(30kV)- 2.2n (1.2kV), Tensão de aceleração: 0.5 a 30kV, Magnificação 25x a 650000x.	LCME
Microscopia de Varredura	MEV (TM 3030/ 2014)		CERMAT
Tamanho de partícula por difração a laser	Mastersizer 2000 Hydro	6 nm – 2000 micrômetros, Dispersão meio líquido	FARMACO
Tamanho de partícula por sedimentação, Estabilidade em suspensões	LUMISIZER (L.U.M GmbH / 2014)	10 nm – 1000 micrômetros	CERMAT
Tamanho de partícula, Potencial Zeta, Peso molecular	NANOSIZER Nano Series ZEN1600 (2006)	0.0003 – 10 micrômetros	LCP
Tamanho e forma de partículas por espalhamento dinâmico de luz	Zetasizer Nano Malvern ZS/2011	0.0003 – 10 micrômetros, Dispersão meio líquido	CERMAT

Conforme o disposto no Edital SisNano, está respeitada a disponibilidade de pelo menos 15% do tempo dos equipamentos pelas comunidades interessadas de acordo com a demanda, com a emissão de laudos certificados cujos custos serão aportados pelos solicitantes externos de acordo com a complexidade dos ensaios a serem realizados ou por hora demandada de uso do equipamento. Os recursos auferidos são utilizados na aquisição, atualização e manutenção dos equipamentos, aquisição de consumíveis, manutenção da equipe técnica e um fundo para ampliação da capacidade instalada, visando atender futuras demandas de ensaios em equipamentos ainda não disponíveis. Para o desenvolvimento de aplicações aos parceiros da comunidade externa são elaborados projetos específicos para atender as referidas demandas, os quais são implantados de acordo com a disponibilidade e uso dos recursos.

Na Tabela a seguir, apresenta-se a relação de empresas que utilizaram os equipamentos e serviços oferecidos pelo LINDEN e seus laboratórios associados em 2015. No total, foram utilizadas 945 horas para a comunidade externa, equivalente a 23% do tempo total disponibilizado para ensaios nos referidos equipamentos, no período referido.

Laboratório	Análises/ Ensaios	Equipamento	Tempo (h)	Empresa
LACBIO	Análise de tamanho de partícula	ZetaSizer Nano ZS	3	TNS Nanotecnolo gia
LACBIO	Potencial zeta	ZetaSizer	10	Nanovetores
LACBIO	Potencial zeta	ZetaSizer	5	BM4 Brasil
LCP	Análise de distribuição de tamanho de partículas	Nanosizer/ ZetaSizer	12	Quimisa
LCP	Caracterização de nitrocelulose	Nanosizer, UV-VIS, HPLC, GPC, GC	12	Nitroquímica
LCP	Consultoria em processos industriais	TEM, MEV, Nanosizer, UV-VIS	20	DPV Produtos Químicos
LCP	Consultoria em processos industriais	FTIR	12	Komport Importadora
LCP	Consultoria em processos industriais	TEM, MEV, Nanosizer, UV-VIS	20	Tigre Tubos e Conexões
LCP	Consultoria em processos industriais	Nanosizer, UV-VIS, HPLC, GPC, GC	60	Termotécnic a
LCP	Consultoria em processos industriais	TEM, MEV, GC, Nanosizer, UV-VIS,	80	Irani Celulose
LCP	Consultoria em processos industriais	Nanosizer, UV-VIS, HPLC, GPC, GC	12	EBP Indústria e Comércio
LCP	Desenvolvimento de processos de separação	GC, HPLC	350	Petrobras
LCP	Consultoria em processos industriais	GC, HPLC, UV- VIS, KARL FISCHER	300	Anjo Química do Brasil
FARMACO	Análise do tamanho de partículas de suspensões	Granulômetro a Laser Mastersizer	4	Laboratório ELOFAR
FARMACO	Análise do tamanho de partículas	Granulômetro a Laser Mastersizer	1	Nanovetores Tecnologia
FARMACO	Análise de tamanho de partículas de materiais	Granulômetro a Laser Mastersizer	4	ABCOL Brasil Compósitos
LCME	Medidas em sistemas manométricos	MEV	20	Nanovetores
CERMAT	Análise de tamanho de	Lumisizer	20	T-Cota

	partículas de materiais		Engenharia
Total		945	
		, 10	

No exercício de 2015, o LINDEN continuou a desenvolver rotinas que já estavam sendo executadas antes de sua formação pelos laboratórios associados. O LINDEN atuou com ênfase em pesquisas e serviços para clientes industriais do setor tradicional e usuários da nanotecnologia além de apoiar atividades juntos as pequenas *start-up* de nanotecnologia primeiramente no Estado de Santa Catarina.

3.2 Elaboração e desenvolvimento de projetos de pesquisa

Visando a atender e expandir demandas de pesquisa, o LINDEN elaborou e submeteu um projeto no âmbito do edital Instituto Nacional de Ciência e Tecnologia (INCT), com parcerias de instituições nacionais e internacionais, e outro projeto relativo à chamada 02/2015 para implementação de uma unidade Embrapii (Empresa Brasileira de Pesquisa e Inovação Industrial.) na área de superfícies nano e microestruturadas. Ambos os projetos encontram-se em processo de avaliação e os respectivos resultados estão previstos para serem divulgados a partir de março/2016.

Além disso, foram elaboradas pelo LINDEN em parceria com empresas, 4 propostas de projetos no edital SIBRATEC Nano, com o objetivo de fomentar e implantar a cultura da inovação nas empresas brasileiras, principalmente micro e pequenas, voltadas para incorporação da nanotecnologia em produtos e processos. Dos 4 pré-projetos, 3 foram aprovados, e as respectivas propostas completas foram elaboradas e enviadas para avaliação final. Neste caso, a divulgação dos resultados está prevista para março/2016.

Por fim, para desenvolvimento em pesquisa e qualificação das análises oferecidas pelo LINDEN, o laboratório vinculou-se ao projeto MODERNIT visando certificar as análises de tamanho de partículas em escala micro e nanométrica.

3.3 Execução do orçamento

Como previsto no orçamento aprovado do projeto LINDEN/CNPq, foi adquirido o equipamento de análise de dispersões Lumisizer que utiliza o principio de análise de separação centrifuga para determinar o tamanho de partícula e analisar a separação e consolidação de amostras em um único instrumento. Para um melhor desempenho do Lumisizer foi necessário também a compra de um *no break*. Ambos os equipamentos se encontram à disposição no laboratório CERMAT.

Além disso, foram concluídos os processos de importação do porta-amostra JEM-2100 para o Laboratório LCME, usado para análises de materiais metálicos magnéticos, e do equipamento Stabino-Nanoflex através da Reoterm Instrumentos Científicos, instalado no Laboratório LCP. Esse último é um equipamento que possui a opção de análise simultânea de potencial zeta e distribuição de tamanho de partículas.

3.4 Participação em eventos e produção científica e tecnológica

Em relação aos requisitos relativos à capacitação da equipe de acordo o SisNano, o LINDEN investiu na capacitação dos membros do laboratório como mostra a Tabela a seguir.

Membro	Curso	Período	
Caroline Zanini	1° Treinamento para Implantação de	17/11/14	a
Bressan	Sistema de Gestão de Laboratórios	21/11/14	
Andrea Granada	segundo a ABNT NBR ISO IEC		
Allul ea Gl allaua	17025:2005		
Caroline Zanini	Validação de Métodos e Incerteza de	13/04/15 a	a
Bressan	Medição	15/04/15	
	Patentes como Ferramentas de	15/04/15 a	
Steferson Stares	Monitoramento Tecnológico & Invenção	16/04/15 a	
	Estratégica	10/04/13	

Em outubro/2015, o LINDEN participou do evento NanoTradeShow, em São Paulo, SP. A Nano TradeShow é a única feira no Brasil voltada para o mercado de nanotecnologia. O evento foi destinado às empresas que buscam através desta solução a inovação de seus produtos para se tornarem cada vez mais competitivas. A feira teve participação de instituições brasileiras e de vários outros países, incluindo fornecedores, universidades, pesquisadores e indústrias a fim de impulsionar os negócios e o desenvolvimento do setor.

Neste evento, conforme os dados apresentados pelo coordenador de Micro e Nanotecnologias do MCTI, o LINDEN se destaca em termos de produção científica (artigos) e tecnológica (patentes) como o Laboratório mais produtivo (em média, Tabela a seguir) dentre todos os 26 Laboratórios Associados e Estratégicos na área de nanotecnologia no Brasil.

Produção	SE			S		NE		N	
	SP	RJ	MG	RS	SC	PR	PE	СЕ	PA
Artigos científicos	256	76	120	37	<mark>74</mark>	32	69	12	15
Patentes	51	4	5	1	10	1	4	1	0
Total	307	80	125	38	84	33	73	13	15

No período considerado de avaliação, Santa Catarina em números absolutos ocupou a 3ª colocação em termos de artigos científicos e a 2ª em termos de patentes (atrás de SP e MG). Vale ressaltar que, no entanto, no estado de São Paulo existem atualmente 10 laboratórios e em Minas Gerais há 3 laboratórios vinculados respectivamente ao SisNANO. Em Santa Catarina, a única unidade participante do Sistema é o LINDEN/UFSC.

Ainda na NanoTradeShow, um fato significativo foi a participação de empresas promotoras e/ou consumidoras de soluções nanotecnológicas com base no Estado de Santa Catarina. Das 18 empresas representados neste evento, 10 são catarinenses. Esses dados são consistentes com um estudo do SEBRAE, que afirma que Santa Catarina concentra o maior número de empresas com foco em nanotecnologia, cerca de 25. Esse tipo de negócio conta com mão de obra altamente qualificada, requer grande investimento e muito tempo para se desenvolver – a maioria começa sua trajetória dentro de incubadoras de empresas.

Além disso, o LINDEN participou em novembro/2015 da Semana de Ensino, Pesquisa e Extensão (SEPEX) da UFSC, um dos maiores eventos de divulgação científica de Santa Catarina. O LINDEN esteve presente na SEPEX com um estande onde se apresentaram avanços pelos pesquisadores e bolsistas associados aos laboratórios de nanotecnologia da UFSC e de empresas parceiras.

4 Dificuldades encontradas

Não foram liberados novos recursos de custeio e capital por parte do MCT em 2015. As bolsas só foram renovadas de modo parcial em dezembro/2015, por apenas mais 6 meses.

A conclusão do prédio do Instituto Multidisciplinar de Engenharias de Superfície (IMES), prevista inicialmente para o final de 2015, foi postergada.

Assim, algumas das ações previstas para 2015 foram prejudicadas em sua execução.

5 Ações em 2015

- Solicitação de prorrogação por 12 meses (até novembro/2016) do projeto LINDEN/CNPq, incluindo relatório parcial e plano de ação (aprovada)
- Elaboração e submissão de projeto EMBRAPII (concluída, aguardando resultado)
- Elaboração e submissão de 4 propostas de projeto SIBRATEC Nano (concluída, aguardando resultado)
- Participação em eventos da área para formação e divulgação (cursos do programa Modernit, NanoTradeShow, SEPEX)

6 Metas para 2016

- Execução orçamentária do exercício 2015/2016 (em andamento)
- Desenvolvimento de linhas de pesquisa em nanotecnologia em parceria com os laboratórios associados e empresas conveniadas (em andamento)
- Execução do projeto MODERNIT (em andamento)
- Instalação da infraestrutura de laboratório e de gestão do LINDEN no prédio do IMES (em andamento)