RELATÓRIO DE ATIVIDADES 2014 PRÓ-REITORIA DE PESQUISA (PROPESQ)

Jamil Assreuy

Pró-Reitor de Pesquisa

Heliete Nunes

Pró-Reitora de Pesquisa Adjunta

Elias Machado Gonçalves

Diretor do Departamento de Projetos de Pesquisa

Dachamir Hotza

Presidente da Comissão Gestora do Laboratório Interdisciplinar do Desenvolvimento de Nanoestruturas (LINDEN)

LABORATÓRIO CENTRAL PARA O DESENVOLVIMENTO DE NANOESTRUTURAS (LINDEN)

Unidade: Laboratório Interdisciplinar do Desenvolvimento de Nanoestruturas

(LINDEN) – SisNano - UFSC Diretor: Dachamir Hotza

Endereço: Departamento de Química-CFM

Campus Trindade, prédio administrativo, sala QMC 214

88040-900 Florianópolis, SC

Telefone: +55 (48) 3721 3610 e +55 (48) 3721 3633

E-mail: d.hotza@ufsc.br

1 Equipe técnica e científica

1.1 Equipe gestora

Bolsistas LINDEN: Andrea Granada Ferreira (DTI-A), Caroline Zanini Bressan (DTI-B) e Dagoberto de Oliveira Silva (DTI-A)

1.2 Equipe técnica

Laboratórios associados: LABMAT, CERMAT, LCP, NanotecLab, Polimat , LabSiN, LCME, Lab. Farmacotécnica, LaCBio, GEiMM, LFSS e POLISSOL

Alunos de graduação, pós-graduação e técnicos dos laboratórios associados

Nome	Formação	Tit.	Área de atuação	Responsabilidades		
Adny Henrique	Farmácia	M	Farmácia	Obtenção e caracterização de nanocarreadores		
Silva						
André	Eng. Mecânica	M	Eng. Materiais	Processos de fabricação mecânica e comportamento		
Bittencourt				mecânico de materiais		
Cabral						
Carlos Alberto	Eng. Materiais	M	Eng. Materiais	Engenharia de Materiais e Metalúrgica		
Rey Mafull						
Caroline Motta	Farmácia	G	Farmácia	Obtenção e caracterização de nanocarreadores		
Moreira						
Cauê Correa da	Eng. Materiais	G	Eng. Materiais	Setor de Gestão de Energia e Planta Industrial		
Silva						
César Augusto	Eng. Materiais	G	Eng. de Materiais e	Síntese de compósitos Magnésio-Hidroxiapatita para		
Stupp			Metalúrgica	aplicações biomédicas		
Clarissa K.	Farmácia	M	Farmacotecnia	Obtenção e caracterização de nanocarreadores		
Amorim						
Cristiane Nunes	Eng. Química	D	Reatores químicos	Funcionalização de nanocompósitos com resposta		
Lopes				crômica, nanotubos de carbono		
Deise Consoni	Eng. Materiais	G	Eng. Materiais	Operação, manutenção e treinamento de usuários SEM		
Eduardo Isoppo	Física	D	Física de materiais	Operação, manutenção e treinamento de usuários TEM		
Eliana Oliveira	Biologia	G	Biologia	Operação, manutenção, treinamento de usuários SEM,		
				TEM e Confocal.		
Francine Schutz	Farmácia	M	Farmacotecnia	Obtenção e caracterização de nanocarreadores		
Ivonete Agapito	Farmácia	G	Farmácia	Técnica de laboratório - GEIMM		
Janaina Frohlich	Farmácia	M	Farmacotecnia	Obtenção e caracterização de nanocarreadores		

José da Silva	Física	D	Gestão de projetos	Gerenciamento de projetos de pesquisa,
Rabelo Neto			,	desenvolvimento tecnológico e inovação
José Edson	Eng. Mecânica	G	Farmácia	Técnico de laboratório - Lab. e Eng. Segurança do
Basto				Trabalho (CERMAT)
Laura Sartori	Farmácia	G	Farmácia	Obtenção e caracterização de nanocarreadores
Assunção				
Leônidas João	Biologia	M	Bioquímica	Genética, Câncer e Nanotecnologia
de Mello Junior				
Letícia Alves da	Eng. Química	D	Eng. Materiais	Nanocompósitos poliméricos, materiais nano
Costa				estruturados, encapsulamento de partículas
Luciano de	Física	G	Eng. Materiais	Operação, manutenção e treinamento de usuários SEM.
Oliveira				
Luis F.C. Silva	Farmácia	M	Farmacotecnia	Obtenção e caracterização de nanocarreadores
Luiz Fernando	Eng. Materiais	M	Materiais	Desenvolvimento de polímeros estruturados,
Belchior Ribeiro			poliméricos	copolímeros, sistemas biodegradáveis
Mariana	Farmácia	M	Farmacotecnia	Obtenção/caracterização de nanocarreadores
Dalagnol				poliméricos lipídicos
Mariana	Química	D	Eng. Química	Processamento e a caracterização de cerâmicas
Ferreira				celulares
Sanches				
Monique Del	Administração	E	Gestão financeira	Gestão de recursos financeiros dos projetos
Rey				
Nilton CPereira	Química	M	Físico-química	Apoio técnico
Orlando	Tecnologia	M	Eng. Mecânica e de	Agronomia, com ênfase em Ciência do Solo
Ferreira Cruz	Mecânica		Materiais	
Junior				
Patricia Rabelo	Eng. Materiais	G	Eng. Materiais	Desenvolvimento de compósitos à base de poli-éter-
Monich				éter-cetona reforçados com cargas inorgânicas para
D	7 0 / 1			uso em reabilitação oral
Pietra Fagundes	Eng. Química	G	Eng. química	Área de saneantes
Araújo	D M	-	D 1 M	
Rafael Santiago	Eng. Materiais	D	Eng. de Materiais e	Atuação com ênfase em cerâmica, porcelanatos e
Floriani Pereira	D 0 / 1		Metalúrgica	tribologia
Rafaela	Eng. Química	M	Materiais	Sistemas indicadores de tensão mecânica, corrente
Westphall	For Materials	-	inteligentes	elétrica, pH; nanocompósitos poliméricos
Renata C. Santos	Eng. Materiais	G	Farmácia	Técnica de laboratório - Gerente do Escritório de
				Gestão de Projetos da Rede Sibratec Manufatura e Bens de Capital (CERMAT)
Cargio Vagid	Eng Ouímico	N	Eng Matariais	Engenharia de Materiais, Processos e Engenharia
Sergio Yesid Gómez González	Eng. Química	M	Eng. Materiais	Mecânica, com ênfase em Processamento Cerâmico,
Goillez Golizalez				Materiais Funcionais e Design de Produtos
Silvia Adriana	Química	M	Polímeros híbridos	Obtenção de polímeros híbridos, silanos/silazanos,
Collins Abarca	Quillica	141	1 OHIHELOS HIDI IGOS	nanocompósitos estruturados
Thais Coan	Eng. Química	M	Reatores químicos	Obtenção de polímeros híbridos, silanos/silazanos,
Thais Guali	Ling. Quillinea	171	reacores quillicos	nanocompósitos estruturados
Thaisa Baccarin	Farmácia	M	Farmacotécnica	Obtenção e caracterização de nanocarreadores
Tiago da Rosa	Química	M	Polímeros híbridos	Obtenção de polímeros híbridos, silanos,
Augustinho	Quillica	141	1 omneros moridos	caracterização
Valdete W.	Química	M	Físico-química	Análises físico-químicas/ des. metodologias analíticas
Ricardo	Quinnea	171	1 isico quillica	manaca naico quinicas/ ues. nictouologias anditicas
Wellman Curi	Químico	M	Nanocatálise	Estudos Metodológicos de Nanopartículas Catalíticas
Elias	Quinico	1,1	- Transcatalise	25taa65 Metodologicos de Manoparticulas Gataliticas
LILLUU	Ī	1	1	

1.3 Equipe científica

Corpo docente/pesquisadores

	, ,			
Nome	Formação	Tit.	Área de atuação	Responsabilidades
Alexandre Lago	Física	D	Laser e	Produção e caracterização de nanotubos de carbono
			nanomateriais	
Aloisio N. Klein	Física	D	Metalurgia do pó	Obtenção de fases nanoestruturadas durante a
				sinterização de pós

André Avelino Pasa	Física	D	Física de materiais	Preparação e caracterização de materiais
				semicondutores e nanométricos
Antonio Pedro	Eng.	D	Engenharia de	Processamento e caracterização de cerâmicas
Novaes de Oliveira	Mecânica		Materiais e	celulares e reaproveitamento de resíduos sólidos
			Metalúrgica	industriais
Bruno Alexandre	Eng.	D	Eng. Materiais	Processamento e caracterização mecânica de
Pacheco de Castro	Mecânica			materiais metálicos, cerâmicos e compósitos para
Henriques		_		aplicações biomédicas
Carlos Renato	Física	D	Eng. Materiais	Materiais nanoestrutuados para aplicações em
Rambo				optoeletrônica (células fotovoltáicas) e eletrônica
C/ White E	0 / 1	Б.	T ^ '	impressa
César Vitorio Franco	Química	D	Inorgânica,	Síntese Inorgânica de nanopartículas e tratamento
			tratamento	Superficial de alta performance para mitigar Corrosão
			superficial e Corrosão	Corrosao
Cláudia Ângela	Odontologia	D	Implantodontia e	Cerâmicas odontológicas, próteses fixas e sobre
Maziero Volpato	Oddittologia	ט	Dentística	implantes
Cláudia Sayer	Eng. Química	D	Reatores químicos	Polimerização em emulsão, sistemas com liberação
Gladdia Sayer	Liig. Quillica		reatores quinness	controlada, nanocápsulas
Cristiano Binder	Eng. Químico	D	plasma e	Obtenção de fases nanoestruturadas na sinterização
or ionalio billuci	2115. Quillico		metalurgia do pó	de pós. Produção de filmes nanoestruturados com
				plasma.
Dachamir Hotza	Eng. Química	D	Eng. Materiais	Estruturas híbridas, células a combustível,
Duomanni moteu	Ziigi Quiiiieu		Zingi i raverrano	membranas cerâmicas, nanopartículas
Edson Minatti	Química	D	Polímeros e	Nanossensores
			Surfactantes em	
			Solução	
Elenara Lemos	Farmácia	D	Farmacotecnia/	Obtenção e caracterização de nanocarreadores
Senna			Nanotecnologia	poliméricos e lipídicos com moléculas ativas.
			farmacêutica	
Evelyn Winter da	Farmácia	D	Nanopartículas	Obtenção e caracterização de nanocarreadores,
Silva			para liberação de	citotoxicidade em sistemas nanoestrurados
			fármacos	
Fábio Z. Galetto	Eng. Química	D	Nanocatálise	Síntese de nanopartículas metálicas catalíticas e
				aplicação em reações orgânicas.
Fabíola Monteiro	Farmácia	D	Nanopartículas	Obtenção e caracterização de nanocarreadores,
Filippin			para liberação de	citotoxicidade em sistemas nanoestrurados
D 1 7 1	P	-	fármacos	N 110
Fernando Luiz	Eng.	D	Matrizes e	Moldflow, moldagem por injeção, simulação,
Peixoto	Mecânica	Б.	Ferramentas	projeto de produtos injetados e ensaios mecânicos
Gecioni L. Neckel	Farmácia	D	Farmacotecnia	Avaliação pré-clinica e toxicológica de sistemas
Ciaala Hammaa	Enc	D	Farmacologia metalurgia do pó e	nanoestruturados
Gisele Hammes	Eng. Materiais	ע	0 1	Obtenção de fases nanoestruturadas durante a sinterização de misturas de pós e caracterização de
	Materials		caracterização de materiais	materiais
Guilherme M. de O.	Eng	D	polímeros	Incorporação de nano partículas em materiais
Barra	Materiais	"	politicios	poliméricos
Hazim Ali Al-	Eng.	D	Materiais	Instabilidade plástica, materiais compostos,
Qureshi	Mecânica	"	Compostos e	materiais cerâmicos, materiais de fricção, mecânica
Zurcom	ccaiiica		Tecnologia de	da fratura, plasticidade e processos de conformação
			Fabricação	particularmente na área aeroespacial.
Heloísa Fernandes	Farmácia	D	Nanopartículas	Obtenção e caracterização de nanocarreadores,
			para liberação de	citotoxicidade em sistemas nanoestrurados
			fármacos	
Iara Fabricia	Farmácia	D	Nanopartículas	Obtenção e caracterização de nanocarreadores,
Kretzer			para liberação de	citotoxicidade em sistemas nanoestrurados
			fármacos	
João Batista R. Neto	Eng. Química	D	reologia e	Desenvolvimento e análise de suspensões com
			nanomateriais	nanopartículas
José D. B. de Mello	Eng.	D	(Tribologia)	Tribologia de nano fluídos, análise manométrica de
	Metalúrgica			fenômenos tribológicos e nanotribogia
Josiel Barbosa	Químico	D	Nanocatálise	Síntese de nanopartículas metálicas catalíticas e
Domingos				aplicação em reações orgânicas.
Luciana Maccarini	Eng. Química	D	Materiais	Propriedades óticas dos materiais, colorimetria,

Schabbach			Particulados,	Kubelka-Munk, espectrofotometria, pigmentos,
			Metalurgia do Pó,	caracterização e valorização de resíduos,
			Materiais	sinterização de materiais cerâmicos e
			Cerâmicos e	vitrocerâmicos, materiais cerâmicos eco-
			Biomateriais,	compatíveis
Marcelo Volpatto	Químico	D	Nanocatálise	Síntese de nanopartículas metálicas catalíticas e
Marques				aplicação em reações orgânicas.
Márcio Celso Fredel	Eng.	D	Eng. Mecânica e de	Rotas de fabricação de Cerâmicos e Compósitos,
	Mecânica		Materiais	
Orestes Estevam	Eng.	D	Materiais	Processos de Fabricação e propriedades físicas e
Alarcon	Metalúrgica		Cerâmicos e	mecânicas
			Materiais Metálicos	
Patricia Ortega	Eng.	D	Biomaterias	Materiais metálicos, análise de falhas, inspeção e
Cubillos	Materiais		metálicos	manutenção de equipamentos, tribologia e
				propriedades mecânicas
Philippe Jean Paul	Eng.	D	Materiais de	Desenvolvimento materiais cimentícios
Gleize	Materiais		construção civil	nanoestruturados
Priscila Lemes	Eng.	D	Eng. Materiais	Estruturas híbridas, células a combustível,
Rachadel	Materiais			membranas cerâmicas
Ricardo A. Francisco	Eng. Química	D	Mat. Poliméricos	Desenvolvimento de polímeros híbridos, sistemas
Machado			Reatores Químicos	estruturados, encapsulamento/controle de
				processos
Sônia M. H. Probst	Química	D	(química e	Análise de corrosão de revestimentos nano
			corrosão)	estruturados
Tânia Beatriz	Farmácia	D	Nanopartículas	Obtenção e caracterização de nanocarreadores,
Creczynski Pasa			para liberação de	citotoxicidade em sistemas nanoestrurados
			fármacos	
Valderes Drago	Químico-	D	nanomateriais	Produção e caracterização de nanoparticulas via
	Físico			processos químicos
Valdir Soldi	Química	D	Materiais	Prep. de nanopartículas de base polimérica.
			Polimericos	Nanocompósitos. Incorp. e liberacao de agentes
				ativos.
Wellington L.	Eng. Civil	D	Materiais de	Incorporação de nanomateriais em materiais
Repette			construção civil	cimentícios

2 Introdução e atribuições

O Laboratório Interdisciplinar do Desenvolvimento de Nanoestruturas (LINDEN) é formado por doze laboratórios associados com ênfase no desenvolvimento de nanoestruturas, quatro deles tendo sido incorporados em 2014. Atualmente o LINDEN tem a sua sede no Departamento de Química na sala 208 com regimento interno e regras definidas para a utilização multiusuária de equipamentos. Com previsão para o final de 2015, o LINDEN ocupará dois andares de oito pavimentos do prédio do Instituto Multidisciplinar de Engenharias de Superfície (IMES) onde se instalarão laboratórios para fabricação de micro e nano componentes e superfícies nanoestruturadas, salas de interação com o setor produtivo, salas para pesquisadores visitantes e auditório com 105 lugares visto que vai compartilhar todas as facilidades comuns disponíveis no prédio do IMES.

O LINDEN está focado no desenvolvimento de sistemas nanoestruturados para diversas aplicações, com o objetivo de obter materiais que apresentem melhorias nas suas propriedades e no seu desempenho. Os pesquisadores que integram o LINDEN têm amplo domínio das técnicas de síntese, obtenção e nanofabricação, assim como das técnicas de caracterização de nanoestruturas, as quais podem ser obtidas a partir de materiais orgânicos (poliméricos ou lipídicos), inorgânicos ou metálicos. Esse tema agrega o desenvolvimento de sistemas nanoestruturados com vistas a aplicações

biomédicas, farmacêuticas e cosméticas, que podem inclusive transportar moléculas ativas e outros compostos de interesse, e ao desenvolvimento de técnicas para a modificação de superfícies com materiais nanoestruturadas, *coatings* superficiais de alto desempenho e membranas, e ao desenvolvimento de catalisadores nanoparticulados para aplicação em reações químicas de interesse industrial. No mínimo, quinze por cento do tempo de uso de equipamentos será destinado ao setor produtivo constituído por empresas usuárias e produtoras de bens e serviços de nanotecnologia.

Uma das principais características do LINDEN é o grau de maturidade e consolidação dos laboratórios associados, tanto em termos de infraestrutura de operação e de facilidades instrumentais como de serviços. A consolidação ocorre nas áreas de atuação e se resume no desenvolvimento de nanomateriais, a satisfatória infraestrutura de operação e as facilidades instrumentais e de serviços. Uma vez que ocupe o espaço de 1.042 m² no Instituto Multidisciplinar de Engenharias de Superfície previsto para ser entregue no final de 2015, o LINDEN poderá atuar em sinergia com a infraestrutura deste complexo para fabricação de micro e nano componentes e superfícies nanoestruturadas. O LINDEN, ao atingir maturidade e robustez no prazo máximo de 5 anos, se consolidará como laboratório modelo e inspirador para outras iniciativas similares.

O LINDEN dará acesso facilitado à infraestrutura de pesquisa aos laboratórios de pequeno porte e/ou emergentes e empresas *spin off* estruturando destarte a governabilidade para as nanotecnologias na região que engloba todo ambiente UFSC, centros de pesquisa e inovação, incubadoras e setor produtivo. De forma robusta e consistente objetiva promover a consolidação de grupos emergentes, de laboratórios de pesquisa em nanotecnologias e de empresas interessadas em P,D&I em nanotecnologias tanto regional como nacionalmente.

Como projeção de um cenário de 5 anos o LINDEN prevê adicionar a essas competências e facilidades instrumentais o desenvolvimento da capacidade de escalonamento para atender laboratórios e institutos externos à UFSC, as *spinoff e startup* de nanotecnologia que fornecem produtos e soluções para os seus clientes potenciais, as industrias tradicionais de Santa Catarina resultando em novos produtos e processos, com salto quantitativo e qualitativo em produtos inovadores. Há um conjunto expressivo de empresas com grande potencial de interesse em soluções com base na nanotecnologia que certamente se beneficiarão dos recursos em infraestruturas mais centralizados do LINDEN. Estas empresas terão acesso aos benefícios e vantagens competitivas dos laboratórios consolidados associados ao LINDEN com foco no desenvolvimento de nanomateriais e que já operam comprovadamente como laboratórios multiusuários.

O LINDEN/UFSC abre uma ação estruturante, de gestão e disponibilização do potencial instrumental da Universidade para alavancar o desenvolvimento das vertentes de forma organizada e estratégica, disponibilizando infraestrutura com grande potencial de inovação, e promovendo a formação, capacitação e fixação de recursos humanos, a educação em nanotecnologias e sua divulgação, possibilitando ao País atingir os grandes

objetivos nacionais.

3 Equipamentos disponíveis

Relação dos principais equipamentos disponíveis:

Equipamento

Banho orbital BE-0532 (Tecnal)

Banhos termocriostáticos (-80 a 480 C) e Drum dryer (2009)

Câmara de: luz negra (2003)/ ensaios de biodegradação (2012)/ ensaios de combustão (2012)/ envelhecimento acelerado (2006)

Câmera de Franz - Ensaio permeação/absorção/pele, mucosa bucal e intestinal

Cromatógrafo Gasoso com injetor manual e automático para 80 amostras

Cromatógrafo Líquido de Alta Eficiência: colunas permeação gel (2009) /operação fluídos pressurizados (2007) - 2 equipamentos

Difração a laser / Sirocoo (2014) - medidas de tamanho de partícula em escala micro e nanométrica para pó

Difratometro de Raios x e Interferômetro ótico 2011 (superfície)

Dip coating (2007 / Dispersor mecânico / hidráulico e Dispersor sônico

Eq. análise química (GDOES) e análise química (Raman) (2005)

Eq. Dissolução: Erweka USP-IV célula de fluxo contínuo/ USP II Nova Ética (2000)

Espalhamento de Luz Dinâmico – medidas de tamanho de partículas em escala micro e manométrica em solução - Zetasizer(2006/2008) - 4 equipamentos) e Mastersizer (2010) - 1 equipamento

Espectrofluorímetro de micropratos

Espectrofotômetro UV-VIS: (2009 e 2006)/ Shimadzu (2010)

Espectrómetro Infra-Vermelho com ATR (2010 e 2011) - 2 equipamentos

Granulômetro Laser seco e Nanoindentador (2012)

Laboratório de materiografia e Prensa de bancada 5 t.(2008)

Liofilizador (2006) e Extrusoras mono e dupla rosca piloto (2010)

MEV por Emissão de Campo (FEG) JEOL JSM-6701F

Microscópio Eletrônico de Transmissão de 100 kV JEOL JEM-1011

Microscópio Eletrônico de Transmissão de 200 kV JEOL JEM-2100

Microscópio Eletrônico de varredura (MEV) JEOL JSM-6390LV

Microscópio Óptico Confocal: Leica DMI6000 B

Prensas de compactação de pós e Injetora de pós+polímeros 2002

Reatores laboratoriais e semi industriais trat. Sup./sinterização)

Reatores polimerização (2007)/Forno sinterização/ Forno a vácuo

Reômetros (3 equipamentos) /Tensiômetro/Goniômetro/Tribometro

Sistemas de refrigeração para acondicionamento de amostras

Sonicador de ponteira e Homogeneizador ultrasônico (2009)

TGA/DSC(3 equipamentos) / Calorímetro (2009)

Unidade prep. de mistura de pós e Dilatômetro (sinterização)2010

Viscosímetro capilar e Viscosímetro para operação em linha

4 Atividades de Pesquisa

Conforme o disposto no Edital SisNano, está respeitada a disponibilidade de pelo menos 15% do tempo dos equipamentos pelas comunidades interessadas de acordo com a demanda, com a emissão de laudos certificados cujos custos serão aportados pelos solicitantes externos de acordo com a complexidade dos ensaios a serem realizados ou por hora demandada de uso do equipamento. Os recursos auferidos serão utilizados na aquisição, atualização e manutenção dos equipamentos, aquisição de consumíveis, manutenção da equipe técnica e um fundo para ampliação da capacidade instalada, visando atender futuras demandas de ensaios em equipamentos ainda não disponíveis. Para o desenvolvimento de aplicações aos parceiros da comunidade externa serão elaborados projetos específicos para atender as referidas demandas, os quais serão implantados de acordo com a disponibilidade e uso dos recursos.

No exercício de 2014 o LINDEN continuou a desenvolver rotinas que já estavam sendo

executadas antes de sua formação pelos laboratórios associados. Com a gradual liberação de recursos em 2014 e contratação de bolsista DTI o LINDEN atuou com ênfase em pesquisas e serviços para clientes industriais do setor tradicional e usuários da nanotecnologia além de apoiar atividades juntos as pequenas *start-up* de nanotecnologia primeiramente no Estado de Santa Catarina.

Visando a atender e expandir demandas de pesquisa, o LINDEN também elaborou e submeteu um projeto no âmbito do edital Instituto Nacional de Ciência e Tecnologia (INCT), com parcerias de instituições nacionais e internacionais. Para desenvolvimento em pesquisa e qualificação das análises oferecidas pelo LINDEN, o laboratório vinculouse ao projeto MODERNIT visando certificar as análises de tamanho de partículas em escala micro e nanométrica. A equipe fez parte da primeira etapa do programa através do curso de formação da ISO 17025 em Belo Horizonte.

5 Dificuldades encontradas

O atraso na liberação de recursos previstos para 2014 provenientes do Programa Sisnano comprometeu a execução orçamentária prevista para o primeiro exercício anual.

6 Ações em 2014

- Redação e aprovação de um regimento interno (concluído)
- Regulamentação de adesão/readequação de laboratórios associados ao LINDEN (concluído)
- Elaboração e submissão do projeto INCT (concluído)
- Adesão e planejamento do Projeto Modernit que visa certificar análises de tamanho de partícula em escala micro e manométrica (concluído)
- Incorporação de nova identidade visual para o LINDEN e atualização da página web (concluído)

7 Metas para 2015

- Desenvolvimento de linhas de pesquisa em nanotecnologia em parceria com os laboratórios associados e empresas conveniadas (em andamento)
- Execução do projeto MODERNIT (em andamento)
- Execução orçamentária do exercício 2014/2015 (em andamento)
- Capilarização das ações do LINDEN junto a laboratórios associados através de bolsistas de pesquisa (em andamento)